# The main purpose of a CMD is to provide defaults for an executing container # This CMD opens the jupyter notebook when you run the image # CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --ip 0.0.0.0 --no-browser --allow-root"] CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter lab --ip 0.0.0.0 --no-browser --allow-root"] # CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter lab --ip 0.0.0.0 --allow-root --ip=0.0.0.0 --no-browser --ServerApp.trust_xheaders=True --ServerApp.disable_check_xsrf=False --ServerApp.allow_remote_access=True --ServerApp.allow_origin='*' --ServerApp.allow_credentials=True"]
# # Use the FROM instruction to pull other images to base your new one on # FROM nvidia/cuda:11.6.2-devel-ubuntu20.04
# # # It's imperative that you install jupyter, in particular, to work with Gradient # # RUN pip --no-cache-dir install jupyterlab # # # RUN pip install notebook
# # # Use EXPOSE to instruct the image to expose ports as needed # # EXPOSE 8888
# # # The main purpose of a CMD is to provide defaults for an executing container # # # This CMD opens the jupyter notebook when you run the image # # CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter-lab --ip 0.0.0.0 --allow-root --ip=0.0.0.0 --no-browser --ServerApp.trust_xheaders=True --ServerApp.disable_check_xsrf=False --ServerApp.allow_remote_access=True --ServerApp.allow_origin='*' --ServerApp.allow_credentials=True"]
# # It's imperative that you install jupyter, in particular, to work with Gradient # RUN pip install jupyter
# # Use wget to grab files of interest to have in the container # # RUN apt-get install -y wget
# # A sample notebook to use to confirm Tensorflow works # RUN wget https://raw.githubusercontent.com/gradient-ai/TensorFlow/main/quick_start_beginner.ipynb
# # Use EXPOSE to instruct the image to expose ports as needed # EXPOSE 8888
# # The main purpose of a CMD is to provide defaults for an executing container # # This CMD opens the jupyter notebook when you run the image # CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --ip 0.0.0.0 --no-browser --allow-root"]
# # Use the FROM instruction to pull other images to base your new one on # FROM docker.io/paperspace/tensorflow:2.0.0-gpu-py3-jupyter-lab
# # Use the RUN instruction to make the image do a terminal command like behavior # # Prevent conflicts with pip3 # RUN mv /usr/local/bin/pip /usr/local/bin/pip_2
# # It's imperative that you install jupyter, in particular, to work with Gradient # RUN pip install jupyter
# # Use wget to grab files of interest to have in the container # RUN apt-get install -y wget
# # A sample notebook to use to confirm Tensorflow works # RUN wget https://raw.githubusercontent.com/gradient-ai/TensorFlow/main/quick_start_beginner.ipynb
# # Use EXPOSE to instruct the image to expose ports as needed # EXPOSE 8888
# # The main purpose of a CMD is to provide defaults for an executing container # # This CMD opens the jupyter notebook when you run the image # CMD ["bash", "-c", "source /etc/bash.bashrc && jupyter notebook --ip 0.0.0.0 --no-browser --allow-root"]